Math 221: LINEAR ALGEBRA

Chapter 3. Determinants and Diagonalization §3-2. Determinants and Matrix Inverses

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $02 / 22 / 2021$)

Determinants and Matrix Inverses

Adjugates

Cramer's Rule

Polynomial Interpolation and Vandermonde Determinant

Determinants and Matrix Inverses

Adjugates

Cramer's Rule

Polynomial Interpolation and Vandermonde Determinant

Determinants and Matrix Inverses

Determinants and Matrix Inverses

Theorem (Product Theorem)
If A and B are $\mathrm{n} \times \mathrm{n}$ matrices, then

$$
\operatorname{det}(\mathrm{AB})=\operatorname{det} \mathrm{A} \operatorname{det} \mathrm{~B} .
$$

Determinants and Matrix Inverses

Theorem (Product Theorem)
If A and B are $\mathrm{n} \times \mathrm{n}$ matrices, then

$$
\operatorname{det}(\mathrm{AB})=\operatorname{det} \mathrm{A} \operatorname{det} \mathrm{~B}
$$

Proof.
If either A or B is singular, then both sides are equal to zero.

Determinants and Matrix Inverses

Theorem (Product Theorem)
If A and B are $n \times n$ matrices, then

$$
\operatorname{det}(\mathrm{AB})=\operatorname{det} \mathrm{A} \operatorname{det} \mathrm{~B}
$$

Proof.
If either A or B is singular, then both sides are equal to zero.
Now assume that both A and B are nonsingular, i.e., $\operatorname{rank}(\mathrm{A})=\operatorname{rank}(\mathrm{B})=\mathrm{n}$. Then

$$
\operatorname{rref}(\mathrm{A})=\operatorname{rref}(\mathrm{B})=\mathrm{I}
$$

Determinants and Matrix Inverses

Theorem (Product Theorem)
If A and B are $n \times n$ matrices, then

$$
\operatorname{det}(\mathrm{AB})=\operatorname{det} \mathrm{A} \operatorname{det} \mathrm{~B}
$$

Proof.
If either A or B is singular, then both sides are equal to zero.
Now assume that both A and B are nonsingular, i.e., $\operatorname{rank}(\mathrm{A})=\operatorname{rank}(\mathrm{B})=\mathrm{n}$. Then

$$
\operatorname{rref}(\mathrm{A})=\operatorname{rref}(\mathrm{B})=\mathrm{I}
$$

and

$$
\mathrm{A}=\mathrm{E}_{1} \mathrm{E}_{2} \cdots \mathrm{E}_{\mathrm{p}} \quad \text { and } \quad \mathrm{B}=\mathrm{F}_{1} \mathrm{~F}_{2} \cdots \mathrm{~F}_{\mathrm{q}} .
$$

where E_{i} and F_{j} are elementary matrices.

Determinants and Matrix Inverses

Theorem (Product Theorem)

If A and B are $n \times n$ matrices, then

$$
\operatorname{det}(\mathrm{AB})=\operatorname{det} \mathrm{A} \operatorname{det} \mathrm{~B}
$$

Proof.
If either A or B is singular, then both sides are equal to zero.
Now assume that both A and B are nonsingular, i.e., rank $(\mathrm{A})=\operatorname{rank}(\mathrm{B})=\mathrm{n}$. Then

$$
\operatorname{rref}(\mathrm{A})=\operatorname{rref}(\mathrm{B})=\mathrm{I}
$$

and

$$
\mathrm{A}=\mathrm{E}_{1} \mathrm{E}_{2} \cdots \mathrm{E}_{\mathrm{p}} \quad \text { and } \quad \mathrm{B}=\mathrm{F}_{1} \mathrm{~F}_{2} \cdots \mathrm{~F}_{\mathrm{q}} .
$$

where E_{i} and F_{j} are elementary matrices. Then by the relation of elementary row operations with determinants (Theorem 3.1.2), we see that

$$
\begin{aligned}
|\mathrm{AB}| & =\left|\mathrm{E}_{1} \cdots \mathrm{E}_{\mathrm{p}} \mathrm{~F}_{1} \cdots \mathrm{~F}_{\mathrm{q}}\right| \\
& =\left|\mathrm{E}_{1}\right| \cdots\left|\mathrm{E}_{\mathrm{p}}\right|\left|\mathrm{F}_{1}\right| \cdots\left|\mathrm{F}_{\mathrm{q}}\right| \\
& =\left|\mathrm{E}_{1} \cdots \mathrm{E}_{\mathrm{p}}\right|\left|\mathrm{F}_{1} \cdots \mathrm{~F}_{\mathrm{q}}\right| \\
& =|\mathrm{A}||\mathrm{B}| .
\end{aligned}
$$

Theorem (Determinant of Matrix Inverse)
An $\mathrm{n} \times \mathrm{n}$ matrix A is invertible if and only if $\operatorname{det} \mathrm{A} \neq 0$. In this case,

$$
\operatorname{det}\left(\mathrm{A}^{-1}\right)=(\operatorname{det} \mathrm{A})^{-1}=\frac{1}{\operatorname{det} \mathrm{~A}} .
$$

Theorem (Determinant of Matrix Inverse)
An $\mathrm{n} \times \mathrm{n}$ matrix A is invertible if and only if $\operatorname{det} \mathrm{A} \neq 0$. In this case,

$$
\operatorname{det}\left(\mathrm{A}^{-1}\right)=(\operatorname{det} \mathrm{A})^{-1}=\frac{1}{\operatorname{det} \mathrm{~A}} .
$$

Proof.
$"=":$

$$
1=|\mathrm{I}|=\left|\mathrm{AA}^{-1}\right|=|\mathrm{A}|\left|\mathrm{A}^{-1}\right| \Rightarrow\left\{\begin{array}{l}
|\mathrm{A}| \neq 0 \\
\left|\mathrm{~A}^{-1}\right|=\frac{1}{|\mathrm{~A}|} .
\end{array}\right.
$$

Theorem (Determinant of Matrix Inverse)

An $\mathrm{n} \times \mathrm{n}$ matrix A is invertible if and only if $\operatorname{det} \mathrm{A} \neq 0$. In this case,

$$
\operatorname{det}\left(\mathrm{A}^{-1}\right)=(\operatorname{det} \mathrm{A})^{-1}=\frac{1}{\operatorname{det} \mathrm{~A}} .
$$

Proof.
$" \Rightarrow ":$

$$
1=|\mathrm{I}|=\left|\mathrm{AA}^{-1}\right|=|\mathrm{A}|\left|\mathrm{A}^{-1}\right| \Rightarrow\left\{\begin{array}{l}
|\mathrm{A}| \neq 0 \\
\left|\mathrm{~A}^{-1}\right|=\frac{1}{|\mathrm{~A}|} .
\end{array}\right.
$$

$" \Leftarrow "$ If $|\mathrm{A}| \neq 0$, then $\mathrm{rref}(\mathrm{A})=\mathrm{I}$ because otherwise one obtains contradiction by Theorem 3.1.2. This is another way to say that A is invertible: (recall the matrix inverse algorithm)

$$
[\mathrm{A} \mid \mathrm{I}] \rightarrow[\underbrace{\operatorname{rref}(\mathrm{A})}_{=\mathrm{I}} \mid \mathrm{A}^{-1}] .
$$

Example

Find all values of c for which $A=\left[\begin{array}{rrr}c & 1 & 0 \\ 0 & 2 & c \\ -1 & c & 5\end{array}\right]$ is invertible.

Example

Find all values of c for which $A=\left[\begin{array}{rrr}c & 1 & 0 \\ 0 & 2 & c \\ -1 & c & 5\end{array}\right]$ is invertible.

$$
\left.\operatorname{det} \mathrm{A}\left|=\left|\begin{array}{rrr}
\mathrm{c} & 1 & 0 \\
0 & 2 & \mathrm{c} \\
-1 & \mathrm{c} & 5
\end{array}\right|=\mathrm{c}\right| \begin{array}{ll}
2 & \mathrm{c} \\
\mathrm{c} & 5
\end{array}|+(-1)| \begin{array}{ll}
1 & 0 \\
2 & \mathrm{c}
\end{array} \right\rvert\,
$$

Example

Find all values of c for which $A=\left[\begin{array}{rrr}c & 1 & 0 \\ 0 & 2 & c \\ -1 & c & 5\end{array}\right]$ is invertible.

$$
\begin{gathered}
\operatorname{det} A=\left|\begin{array}{rrr}
c & 1 & 0 \\
0 & 2 & c \\
-1 & c & 5
\end{array}\right|=c\left|\begin{array}{ll}
2 & c \\
c & 5
\end{array}\right|+(-1)\left|\begin{array}{ll}
1 & 0 \\
2 & c
\end{array}\right| \\
\quad=c\left(10-c^{2}\right)-c=c\left(9-c^{2}\right)=c(3-c)(3+c)
\end{gathered}
$$

Example

Find all values of c for which $\mathrm{A}=\left[\begin{array}{rrr}\mathrm{c} & 1 & 0 \\ 0 & 2 & \mathrm{c} \\ -1 & \mathrm{c} & 5\end{array}\right]$ is invertible.

$$
\begin{aligned}
& \operatorname{det} A=\left|\begin{array}{rrr}
c & 1 & 0 \\
0 & 2 & c \\
-1 & c & 5
\end{array}\right|=c\left|\begin{array}{ll}
2 & c \\
c & 5
\end{array}\right|+(-1)\left|\begin{array}{ll}
1 & 0 \\
2 & c
\end{array}\right| \\
& \quad=c\left(10-c^{2}\right)-c=c\left(9-c^{2}\right)=c(3-c)(3+c)
\end{aligned}
$$

Therefore, A is invertible for all $\mathrm{c} \neq 0,3,-3$.

Theorem (Determinant of Matrix Transpose)
If A is an $\mathrm{n} \times \mathrm{n}$ matrix, then $\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{det} \mathrm{A}$.

Theorem (Determinant of Matrix Transpose)
If A is an $\mathrm{n} \times \mathrm{n}$ matrix, then $\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{det} \mathrm{A}$.

Proof.

1. This is trivially true for all elementary matrices.

Theorem (Determinant of Matrix Transpose)
If A is an $\mathrm{n} \times \mathrm{n}$ matrix, then $\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{det} \mathrm{A}$.

Proof.

1. This is trivially true for all elementary matrices.
2. If A is not invertible, then neither is A^{T}. Hence, $\operatorname{det} \mathrm{A}=0=\operatorname{det} \mathrm{A}^{\mathrm{T}}$.

Theorem (Determinant of Matrix Transpose)
If A is an $\mathrm{n} \times \mathrm{n}$ matrix, then $\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{det} \mathrm{A}$.

Proof.

1. This is trivially true for all elementary matrices.
2. If A is not invertible, then neither is A^{T}. Hence, $\operatorname{det} \mathrm{A}=0=\operatorname{det} \mathrm{A}^{\mathrm{T}}$.
3. If A is invertible, then $\mathrm{A}=\mathrm{E}_{\mathrm{k}} \mathrm{E}_{\mathrm{k}-1} \cdots \mathrm{E}_{2} \mathrm{E}_{1}$. Hence, by Case 1,

$$
\begin{aligned}
\left|\mathrm{A}^{\mathrm{T}}\right| & =\left|\left(\mathrm{E}_{\mathrm{k}} \mathrm{E}_{\mathrm{k}-1} \cdots \mathrm{E}_{2} \mathrm{E}_{1}\right)^{\mathrm{T}}\right| \\
& =\left|\mathrm{E}_{1}^{\mathrm{T}} \mathrm{E}_{2}^{\mathrm{T}} \cdots \mathrm{E}_{\mathrm{k}-1}^{\mathrm{T}} \mathrm{E}_{\mathrm{k}}^{\mathrm{T}}\right| \\
& =\left|\mathrm{E}_{1}^{\mathrm{T}}\right|\left|\mathrm{E}_{2}^{\mathrm{T}}\right| \cdots\left|\mathrm{E}_{\mathrm{k}-1}^{\mathrm{T}}\right|\left|\mathrm{E}_{\mathrm{k}}^{\mathrm{T}}\right| \\
& =\left|\mathrm{E}_{1}\right|\left|\mathrm{E}_{2}\right| \cdots\left|\mathrm{E}_{\mathrm{k}-1}\right|\left|\mathrm{E}_{\mathrm{k}}\right| \\
& =\left|\mathrm{E}_{\mathrm{k}}\right|\left|\mathrm{E}_{\mathrm{k}-1}\right| \cdots\left|\mathrm{E}_{2}\right|\left|\mathrm{E}_{1}\right| \\
& =\left|\mathrm{E}_{\mathrm{k}} \mathrm{E}_{\mathrm{k}-1} \cdots \mathrm{E}_{2} \mathrm{E}_{1}\right| \\
& =|\mathrm{A}|
\end{aligned}
$$

Problem

Suppose A is a 3×3 matrix. Find det A and det B if

$$
\operatorname{det}\left(2 \mathrm{~A}^{-1}\right)=-4=\operatorname{det}\left(\mathrm{A}^{3}\left(\mathrm{~B}^{-1}\right)^{\mathrm{T}}\right) .
$$

Problem

Suppose A is a 3×3 matrix. Find $\operatorname{det} A$ and $\operatorname{det} B$ if

$$
\operatorname{det}\left(2 \mathrm{~A}^{-1}\right)=-4=\operatorname{det}\left(\mathrm{A}^{3}\left(\mathrm{~B}^{-1}\right)^{\mathrm{T}}\right)
$$

Solution
First,

$$
\begin{aligned}
\operatorname{det}\left(2 \mathrm{~A}^{-1}\right) & =-4 \\
2^{3} \operatorname{det}\left(\mathrm{~A}^{-1}\right) & =-4 \\
\frac{1}{\operatorname{det} \mathrm{~A}} & =\frac{-4}{8}=-\frac{1}{2}
\end{aligned}
$$

Problem

Suppose A is a 3×3 matrix. Find $\operatorname{det} A$ and $\operatorname{det} B$ if

$$
\operatorname{det}\left(2 \mathrm{~A}^{-1}\right)=-4=\operatorname{det}\left(\mathrm{A}^{3}\left(\mathrm{~B}^{-1}\right)^{\mathrm{T}}\right)
$$

Solution
First,

$$
\begin{aligned}
\operatorname{det}\left(2 \mathrm{~A}^{-1}\right) & =-4 \\
2^{3} \operatorname{det}\left(\mathrm{~A}^{-1}\right) & =-4 \\
\frac{1}{\operatorname{det} \mathrm{~A}} & =\frac{-4}{8}=-\frac{1}{2}
\end{aligned}
$$

Therefore, $\operatorname{det} \mathrm{A}=-2$.

Solution (continued)
Now,

$$
\begin{aligned}
\operatorname{det}\left(\mathrm{A}^{3}\left(\mathrm{~B}^{-1}\right)^{\mathrm{T}}\right) & =-4 \\
(\operatorname{det} \mathrm{~A})^{3} \operatorname{det}\left(\mathrm{~B}^{-1}\right) & =-4 \\
(-2)^{3} \operatorname{det}\left(\mathrm{~B}^{-1}\right) & =-4 \\
(-8) \operatorname{det}\left(\mathrm{B}^{-1}\right) & =-4 \\
\frac{1}{\operatorname{det} \mathrm{~B}} & =\frac{-4}{-8}=\frac{1}{2}
\end{aligned}
$$

Solution (continued)
Now,

$$
\begin{aligned}
\operatorname{det}\left(\mathrm{A}^{3}\left(\mathrm{~B}^{-1}\right)^{\mathrm{T}}\right) & =-4 \\
(\operatorname{det} \mathrm{~A})^{3} \operatorname{det}\left(\mathrm{~B}^{-1}\right) & =-4 \\
(-2)^{3} \operatorname{det}\left(\mathrm{~B}^{-1}\right) & =-4 \\
(-8) \operatorname{det}\left(\mathrm{B}^{-1}\right) & =-4 \\
\frac{1}{\operatorname{det} \mathrm{~B}} & =\frac{-4}{-8}=\frac{1}{2}
\end{aligned}
$$

Therefore, $\operatorname{det} \mathrm{B}=2$.

Problem

Suppose A, B and C are 4×4 matrices with

$$
\operatorname{det} \mathrm{A}=-1, \operatorname{det} \mathrm{~B}=2, \quad \text { and } \quad \operatorname{det} \mathrm{C}=1 .
$$

Find $\operatorname{det}\left(2 \mathrm{~A}^{2}\left(\mathrm{~B}^{-1}\right)\left(\mathrm{C}^{\mathrm{T}}\right)^{3} \mathrm{~B}\left(\mathrm{~A}^{-1}\right)\right)$.

Problem

Suppose A, B and C are 4×4 matrices with

$$
\operatorname{det} \mathrm{A}=-1, \operatorname{det} \mathrm{~B}=2, \quad \text { and } \quad \operatorname{det} \mathrm{C}=1 .
$$

Find $\operatorname{det}\left(2 \mathrm{~A}^{2}\left(\mathrm{~B}^{-1}\right)\left(\mathrm{C}^{\mathrm{T}}\right)^{3} \mathrm{~B}\left(\mathrm{~A}^{-1}\right)\right)$.

Solution

$$
\begin{aligned}
\operatorname{det}\left(2 \mathrm{~A}^{2}\left(\mathrm{~B}^{-1}\right)\left(\mathrm{C}^{\mathrm{T}}\right)^{3} \mathrm{~B}\left(\mathrm{~A}^{-1}\right)\right) & =2^{4}(\operatorname{det} \mathrm{~A})^{2} \frac{1}{\operatorname{det} \mathrm{~B}}(\operatorname{det} \mathrm{C})^{3}(\operatorname{det} \mathrm{~B}) \frac{1}{\operatorname{det} \mathrm{~A}} \\
& =16(\operatorname{det} \mathrm{~A})(\operatorname{det} \mathrm{C})^{3} \\
& =16 \times(-1) \times 1^{3} \\
& =-16 .
\end{aligned}
$$

Problem

A square matrix A is orthogonal if and only if $\mathrm{A}^{\mathrm{T}}=\mathrm{A}^{-1}$. What are the possible values of $\operatorname{det} \mathrm{A}$ if A is orthogonal?

Problem

A square matrix A is orthogonal if and only if $\mathrm{A}^{\mathrm{T}}=\mathrm{A}^{-1}$. What are the possible values of det A if A is orthogonal?

Solution
Since $\mathrm{A}^{\mathrm{T}}=\mathrm{A}^{-1}$,

$$
\begin{aligned}
\operatorname{det} \mathrm{A}^{\mathrm{T}} & =\operatorname{det}\left(\mathrm{A}^{-1}\right) \\
\operatorname{det} \mathrm{A} & =\frac{1}{\operatorname{det} \mathrm{~A}} \\
(\operatorname{det} \mathrm{~A})^{2} & =1
\end{aligned}
$$

Problem

A square matrix A is orthogonal if and only if $\mathrm{A}^{\mathrm{T}}=\mathrm{A}^{-1}$. What are the possible values of $\operatorname{det} \mathrm{A}$ if A is orthogonal?

Solution
Since $\mathrm{A}^{\mathrm{T}}=\mathrm{A}^{-1}$,

$$
\begin{aligned}
\operatorname{det} \mathrm{A}^{\mathrm{T}} & =\operatorname{det}\left(\mathrm{A}^{-1}\right) \\
\operatorname{det} \mathrm{A} & =\frac{1}{\operatorname{det} \mathrm{~A}} \\
(\operatorname{det} \mathrm{~A})^{2} & =1
\end{aligned}
$$

Assuming A is a real matrix, this implies that $\operatorname{det} \mathrm{A}= \pm 1$, i.e., $\operatorname{det} \mathrm{A}=1$ or $\operatorname{det} \mathrm{A}=-1$.

Determinants and Matrix Inverses

Adjugates

Cramer's Rule

Polynomial Interpolation and Vandermonde Determinant

Adjugates

For a 2×2 matrix $\mathrm{A}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$, we have already seen the adjugate of A defined as

$$
\operatorname{adj}(A)=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

and observed that

$$
\begin{aligned}
\operatorname{Aadj}(\mathrm{A}) & =\left[\begin{array}{ll}
a & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]\left[\begin{array}{cc}
\mathrm{d} & -\mathrm{b} \\
-\mathrm{c} & \mathrm{a}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\operatorname{ad}-\mathrm{bc} & 0 \\
0 & \mathrm{ad}-\mathrm{bc}
\end{array}\right] \\
& =(\operatorname{det} \mathrm{A}) \mathrm{I}_{2}
\end{aligned}
$$

Adjugates

For a 2×2 matrix $\mathrm{A}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$, we have already seen the adjugate of A defined as

$$
\operatorname{adj}(\mathrm{A})=\left[\begin{array}{cc}
\mathrm{d} & -\mathrm{b} \\
-\mathrm{c} & \mathrm{a}
\end{array}\right],
$$

and observed that

$$
\begin{aligned}
\operatorname{Aadj}(\mathrm{A}) & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& =\left[\begin{array}{cc}
\operatorname{ad}-\mathrm{bc} & 0 \\
0 & a d-b c
\end{array}\right] \\
& =(\operatorname{det} A) I_{2}
\end{aligned}
$$

Furthermore, if $\operatorname{det} \mathrm{A} \neq 0$, then A is invertible and

$$
\mathrm{A}^{-1}=\frac{1}{\operatorname{det} \mathrm{~A}} \operatorname{adj}(\mathrm{~A})
$$

Definition (Adjugate Matrix)

If A is an $\mathrm{n} \times \mathrm{n}$ matrix, then the adjugate matrix of A is defined to be

$$
\operatorname{adj}(\mathrm{A}) \stackrel{\text { def }}{=}\left[\mathrm{c}_{\mathrm{ij}}(\mathrm{~A})\right]^{\mathrm{T}}=\left[(-1)^{\mathrm{i}+\mathrm{j}} \operatorname{det}\left(\mathrm{~A}_{\mathrm{ij}}\right)\right]^{\mathrm{T}},
$$

where $\mathrm{c}_{\mathrm{ij}}(\mathrm{A})$ is the (i, j)-cofactor of A , i.e., $\operatorname{adj}(\mathrm{A})$ is the transpose of the cofactor matrix (matrix of cofactors).

Problem

Find $\operatorname{adj}(\mathrm{A})$ when $\mathrm{A}=\left[\begin{array}{rrr}2 & 1 & 3 \\ 5 & -7 & 1 \\ 3 & 0 & -6\end{array}\right]$ and compute $\mathrm{A} \operatorname{adj}(\mathrm{A})$.

Problem

Find $\operatorname{adj}(\mathrm{A})$ when $\mathrm{A}=\left[\begin{array}{rrr}2 & 1 & 3 \\ 5 & -7 & 1 \\ 3 & 0 & -6\end{array}\right]$ and compute $\mathrm{A} \operatorname{adj}(\mathrm{A})$.
Solution

$$
\operatorname{adj}(A)=\left[\begin{array}{rrr}
42 & 6 & 22 \\
33 & -21 & 13 \\
21 & 3 & -19
\end{array}\right]
$$

Problem
Find $\operatorname{adj}(\mathrm{A})$ when $\mathrm{A}=\left[\begin{array}{rrr}2 & 1 & 3 \\ 5 & -7 & 1 \\ 3 & 0 & -6\end{array}\right]$ and compute $\mathrm{A} \operatorname{adj}(\mathrm{A})$.
Solution

$$
\operatorname{adj}(A)=\left[\begin{array}{rrr}
42 & 6 & 22 \\
33 & -21 & 13 \\
21 & 3 & -19
\end{array}\right]
$$

Notice that
$A \operatorname{adj}(A)=\left[\begin{array}{rrr}2 & 1 & 3 \\ 5 & -7 & 1 \\ 3 & 0 & -6\end{array}\right]\left[\begin{array}{rrr}42 & 6 & 22 \\ 33 & -21 & 13 \\ 21 & 3 & -19\end{array}\right]=\left[\begin{array}{ccc}180 & 0 & 0 \\ 0 & 180 & 0 \\ 0 & 0 & 180\end{array}\right]$

Problem
Find $\operatorname{adj}(\mathrm{A})$ when $\mathrm{A}=\left[\begin{array}{rrr}2 & 1 & 3 \\ 5 & -7 & 1 \\ 3 & 0 & -6\end{array}\right]$ and compute $\mathrm{A} \operatorname{adj}(\mathrm{A})$.
Solution

$$
\operatorname{adj}(\mathrm{A})=\left[\begin{array}{rrr}
42 & 6 & 22 \\
33 & -21 & 13 \\
21 & 3 & -19
\end{array}\right]
$$

Notice that
$\operatorname{A} \operatorname{adj}(\mathrm{A})=\left[\begin{array}{rrr}2 & 1 & 3 \\ 5 & -7 & 1 \\ 3 & 0 & -6\end{array}\right]\left[\begin{array}{rrr}42 & 6 & 22 \\ 33 & -21 & 13 \\ 21 & 3 & -19\end{array}\right]=\left[\begin{array}{ccc}180 & 0 & 0 \\ 0 & 180 & 0 \\ 0 & 0 & 180\end{array}\right]$
$\operatorname{det} \mathrm{A}=\left|\begin{array}{rrr}2 & 1 & 3 \\ 5 & -7 & 1 \\ 3 & 0 & -6\end{array}\right|=\left|\begin{array}{rrr}2 & 1 & 3 \\ 19 & 0 & 22 \\ 3 & 0 & -6\end{array}\right|=(-1)\left|\begin{array}{rr}19 & 22 \\ 3 & -6\end{array}\right|=180$,

Problem

Find $\operatorname{adj}(\mathrm{A})$ when $\mathrm{A}=\left[\begin{array}{rrr}2 & 1 & 3 \\ 5 & -7 & 1 \\ 3 & 0 & -6\end{array}\right]$ and compute $\mathrm{A} \operatorname{adj}(\mathrm{A})$.
Solution

$$
\operatorname{adj}(\mathrm{A})=\left[\begin{array}{rrr}
42 & 6 & 22 \\
33 & -21 & 13 \\
21 & 3 & -19
\end{array}\right]
$$

Notice that
$\mathrm{A} \operatorname{adj}(\mathrm{A})=\left[\begin{array}{rrr}2 & 1 & 3 \\ 5 & -7 & 1 \\ 3 & 0 & -6\end{array}\right]\left[\begin{array}{rrr}42 & 6 & 22 \\ 33 & -21 & 13 \\ 21 & 3 & -19\end{array}\right]=\left[\begin{array}{ccc}180 & 0 & 0 \\ 0 & 180 & 0 \\ 0 & 0 & 180\end{array}\right]$
$\operatorname{det} \mathrm{A}=\left|\begin{array}{rrr}2 & 1 & 3 \\ 5 & -7 & 1 \\ 3 & 0 & -6\end{array}\right|=\left|\begin{array}{rrr}2 & 1 & 3 \\ 19 & 0 & 22 \\ 3 & 0 & -6\end{array}\right|=(-1)\left|\begin{array}{rr}19 & 22 \\ 3 & -6\end{array}\right|=180$,
Therefore,

$$
\mathrm{A} \operatorname{adj}(\mathrm{~A})=(\operatorname{det} \mathrm{A}) \mathrm{I} .
$$

Theorem (The Adjugate Formula)

If A is an $\mathrm{n} \times \mathrm{n}$ matrix, then

$$
\operatorname{A} \operatorname{adj}(\mathrm{A})=(\operatorname{det} \mathrm{A}) \mathrm{I}=\operatorname{adj}(\mathrm{A}) \mathrm{A} .
$$

Furthermore, if $\operatorname{det} \mathrm{A} \neq 0$, then

$$
\mathrm{A}^{-1}=\frac{1}{\operatorname{det} \mathrm{~A}} \operatorname{adj}(\mathrm{~A}) .
$$

Proof.
We only prove the case when $\mathrm{n}=3$.

$$
A \operatorname{adj}(A)=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{lll}
c_{11} & c_{21} & c_{31} \\
c_{12} & c_{22} & c_{32} \\
c_{13} & c_{23} & c_{33}
\end{array}\right]=\left[\begin{array}{ccc}
|A| & 0 & 0 \\
0 & |A| & 0 \\
0 & 0 & |A|
\end{array}\right]
$$

where, for example,

$$
\begin{aligned}
(3,2) \text {-th entry } & =a_{31} c_{21}+a_{32} c_{22}+a_{33} c_{23} \\
& =\operatorname{det}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=0 .
\end{aligned}
$$

Example

For an $\mathrm{n} \times \mathrm{n}$ matrix A , show that $\operatorname{det} \operatorname{adj}(\mathrm{A})=(\operatorname{det} \mathrm{A})^{\mathrm{n}-1}$.

Example

For an $\mathrm{n} \times \mathrm{n}$ matrix A , show that det $\operatorname{adj}(\mathrm{A})=(\operatorname{det} \mathrm{A})^{\mathrm{n}-1}$.

Using the adjugate formula,

$$
\begin{aligned}
\mathrm{A} \operatorname{adj}(\mathrm{~A}) & =(\operatorname{det} \mathrm{A}) \mathrm{I} \\
\operatorname{det}(\mathrm{~A} \operatorname{adj}(\mathrm{~A})) & =\operatorname{det}((\operatorname{det} \mathrm{A}) \mathrm{I}) \\
(\operatorname{det} \mathrm{A}) \times \operatorname{det} \operatorname{adj}(\mathrm{A}) & =(\operatorname{det} \mathrm{A})^{\mathrm{n}}(\operatorname{det} \mathrm{I}) \\
(\operatorname{det} \mathrm{A}) \times \operatorname{det} \operatorname{adj}(\mathrm{A}) & =(\operatorname{det} \mathrm{A})^{\mathrm{n}}
\end{aligned}
$$

Example

For an $\mathrm{n} \times \mathrm{n}$ matrix A , show that $\operatorname{det} \operatorname{adj}(\mathrm{A})=(\operatorname{det} \mathrm{A})^{\mathrm{n}-1}$.
Using the adjugate formula,

$$
\begin{aligned}
\operatorname{Aadj}(\mathrm{A}) & =(\operatorname{det} \mathrm{A}) \mathrm{I} \\
\operatorname{det}(\mathrm{~A} \operatorname{adj}(\mathrm{~A})) & =\operatorname{det}((\operatorname{det} \mathrm{A}) \mathrm{I}) \\
(\operatorname{det} \mathrm{A}) \times \operatorname{det} \operatorname{adj}(\mathrm{A}) & =(\operatorname{det} \mathrm{A})^{\mathrm{n}}(\operatorname{det} \mathrm{I}) \\
(\operatorname{det} \mathrm{A}) \times \operatorname{det} \operatorname{adj}(\mathrm{A}) & =(\operatorname{det} \mathrm{A})^{\mathrm{n}}
\end{aligned}
$$

If $\operatorname{det} \mathrm{A} \neq 0$, then divide both sides of the last equation by $\operatorname{det} \mathrm{A}$:

$$
\operatorname{det} \operatorname{adj}(\mathrm{A})=(\operatorname{det} \mathrm{A})^{\mathrm{n}-1}
$$

Example (continued)
For the case $\operatorname{det} \mathrm{A}=0$, we claim that

$$
\operatorname{det} A=0 \Rightarrow \operatorname{det} \operatorname{adj}(A)=0
$$

Example (continued)
For the case $\operatorname{det} \mathrm{A}=0$, we claim that

$$
\operatorname{det} A=0 \Rightarrow \operatorname{det} \operatorname{adj}(A)=0
$$

which implies that

$$
\operatorname{det} \operatorname{adj}(\mathrm{A})=0=0^{\mathrm{n}-1}=(\operatorname{det} \mathrm{A})^{\mathrm{n}-1} .
$$

Example (continued)
For the case $\operatorname{det} \mathrm{A}=0$, we claim that

$$
\operatorname{det} A=0 \Rightarrow \operatorname{det} \operatorname{adj}(A)=0
$$

which implies that

$$
\operatorname{det} \operatorname{adj}(\mathrm{A})=0=0^{\mathrm{n}-1}=(\operatorname{det} \mathrm{A})^{\mathrm{n}-1} .
$$

Proof. (of (\star))
We will prove (\star) by contradiction.

Example (continued)
For the case $\operatorname{det} \mathrm{A}=0$, we claim that

$$
\operatorname{det} A=0 \Rightarrow \operatorname{det} \operatorname{adj}(A)=0
$$

which implies that

$$
\operatorname{det} \operatorname{adj}(\mathrm{A})=0=0^{\mathrm{n}-1}=(\operatorname{det} \mathrm{A})^{\mathrm{n}-1} .
$$

Proof. (of (\star))
We will prove (\star) by contradiction. Indeed, if $\operatorname{det} \mathrm{A}=0$, then

$$
\mathrm{A} \operatorname{adj}(\mathrm{~A})=(\operatorname{det} \mathrm{A}) \mathrm{I}=(0) \mathrm{I}=\mathrm{O},
$$

i.e., A adj(A) is the zero matrix.

Example (continued)
For the case $\operatorname{det} \mathrm{A}=0$, we claim that

$$
\operatorname{det} A=0 \Rightarrow \operatorname{det} \operatorname{adj}(A)=0
$$

which implies that

$$
\operatorname{det} \operatorname{adj}(\mathrm{A})=0=0^{\mathrm{n}-1}=(\operatorname{det} \mathrm{A})^{\mathrm{n}-1} .
$$

Proof. (of (\star))
We will prove (\star) by contradiction. Indeed, if $\operatorname{det} A=0$, then

$$
\mathrm{A} \operatorname{adj}(\mathrm{~A})=(\operatorname{det} \mathrm{A}) \mathrm{I}=(0) \mathrm{I}=\mathrm{O},
$$

i.e., $A \operatorname{adj}(A)$ is the zero matrix. If det $\operatorname{adj}(A) \neq 0$, then $\operatorname{adj}(A)$ would be invertible, and $\mathrm{A} \operatorname{adj}(\mathrm{A})=\mathrm{O}$ would imply $\mathrm{A}=\mathrm{O}$.

Example (continued)
For the case $\operatorname{det} \mathrm{A}=0$, we claim that

$$
\operatorname{det} A=0 \Rightarrow \operatorname{det} \operatorname{adj}(A)=0
$$

which implies that

$$
\operatorname{det} \operatorname{adj}(\mathrm{A})=0=0^{\mathrm{n}-1}=(\operatorname{det} \mathrm{A})^{\mathrm{n}-1} .
$$

Proof. (of (\star))
We will prove (\star) by contradiction. Indeed, if $\operatorname{det} A=0$, then

$$
\mathrm{A} \operatorname{adj}(\mathrm{~A})=(\operatorname{det} \mathrm{A}) \mathrm{I}=(0) \mathrm{I}=\mathrm{O},
$$

i.e., $A \operatorname{adj}(A)$ is the zero matrix. If det $\operatorname{adj}(A) \neq 0$, then $\operatorname{adj}(A)$ would be invertible, and $A \operatorname{adj}(A)=O$ would imply $A=O$. However, if $A=O$, then $\operatorname{adj}(\mathrm{A})=\mathrm{O}$ and is not invertible, and thus has determinant equal to zero, i.e., $\operatorname{det} \operatorname{adj}(\mathrm{A})=0$, (a contradiction!)

Example (continued)
For the case $\operatorname{det} \mathrm{A}=0$, we claim that

$$
\operatorname{det} A=0 \Rightarrow \operatorname{det} \operatorname{adj}(A)=0
$$

which implies that

$$
\operatorname{det} \operatorname{adj}(\mathrm{A})=0=0^{\mathrm{n}-1}=(\operatorname{det} \mathrm{A})^{\mathrm{n}-1} .
$$

Proof. (of (\star))
We will prove (\star) by contradiction. Indeed, if $\operatorname{det} A=0$, then

$$
\mathrm{A} \operatorname{adj}(\mathrm{~A})=(\operatorname{det} \mathrm{A}) \mathrm{I}=(0) \mathrm{I}=\mathrm{O},
$$

i.e., $A \operatorname{adj}(A)$ is the zero matrix. If det $\operatorname{adj}(A) \neq 0$, then $\operatorname{adj}(A)$ would be invertible, and $A \operatorname{adj}(A)=O$ would imply $A=O$. However, if $A=O$, then $\operatorname{adj}(\mathrm{A})=\mathrm{O}$ and is not invertible, and thus has determinant equal to zero, i.e., $\operatorname{det} \operatorname{adj}(\mathrm{A})=0,($ a contradiction!) Therefore, $\operatorname{det} \operatorname{adj}(\mathrm{A})=0$, i.e., (\star) is true.

Problem

Let A and B be $\mathrm{n} \times \mathrm{n}$ matrices. Show that $\operatorname{det}\left(\mathrm{A}+\mathrm{B}^{\mathrm{T}}\right)=\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}+\mathrm{B}\right)$.

Problem

Let A and B be $\mathrm{n} \times \mathrm{n}$ matrices. Show that $\operatorname{det}\left(\mathrm{A}+\mathrm{B}^{\mathrm{T}}\right)=\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}+\mathrm{B}\right)$.

Solution
Notice that

$$
\left(\mathrm{A}+\mathrm{B}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}+\left(\mathrm{B}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}+\mathrm{B} .
$$

Since a matrix and it's transpose have the same determinant

$$
\operatorname{det}\left(\mathrm{A}+\mathrm{B}^{\mathrm{T}}\right)=\operatorname{det}\left(\left(\mathrm{A}+\mathrm{B}^{\mathrm{T}}\right)^{\mathrm{T}}\right)=\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}+\mathrm{B}\right) .
$$

Problem

For each of the following statements, determine if it is true or false, and supply a proof or a counterexample.

1. If $\operatorname{adj}(A)$ exists, then A is invertible.
2. If A and B are $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}\left(B^{T} A\right)$.

Problem

For each of the following statements, determine if it is true or false, and supply a proof or a counterexample.

1. If $\operatorname{adj}(A)$ exists, then A is invertible.
2. If A and B are $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}\left(B^{T} A\right)$.

Problem
Prove or give a counterexample to the following statement:

$$
\text { If } \operatorname{det} \mathrm{A}=1, \text { then } \operatorname{adj}(\mathrm{A})=\mathrm{A} .
$$

Determinants and Matrix Inverses

Adjugates

Cramer's Rule

Polynomial Interpolation and Vandermonde Determinant

Cramer's Rule

Cramer's Rule

If A is an $\mathrm{n} \times \mathrm{n}$ invertible matrix, then the solution to $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$ can be given in terms of determinants of matrices.

Cramer's Rule

If A is an $n \times n$ invertible matrix, then the solution to $A \vec{x}=\vec{b}$ can be given in terms of determinants of matrices.

Theorem (Cramer's Rule)

Let A be an $\mathrm{n} \times \mathrm{n}$ invertible matrix, the solution to the system $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$ of n equations in teh variables $\mathrm{x}_{1}, \mathrm{x}_{2} \cdots \mathrm{x}_{\mathrm{n}}$ is given by

$$
\mathrm{x}_{1}=\frac{\operatorname{det}\left(\mathrm{A}_{1}(\overrightarrow{\mathrm{~b}})\right)}{\operatorname{det} \mathrm{A}}, \quad \mathrm{x}_{2}=\frac{\operatorname{det}\left(\mathrm{A}_{2}(\overrightarrow{\mathrm{~b}})\right)}{\operatorname{det} \mathrm{A}}, \quad \cdots, \quad \mathrm{x}_{\mathrm{n}}=\frac{\operatorname{det}\left(\mathrm{A}_{\mathrm{n}}(\overrightarrow{\mathrm{~b}})\right)}{\operatorname{det} \mathrm{A}}
$$

where, for each j, the matrix $A_{j}(\vec{b})$ is obtained from A by replacing column j with \vec{b} :

$$
A_{j}(\vec{b})=\left[\begin{array}{lllllll}
\vec{a}_{1} & \cdots & \vec{a}_{j-1} & \vec{b} & \vec{a}_{j+1} & \cdots & \vec{a}_{n}
\end{array}\right]
$$

Proof.

- Notice that

$$
\begin{aligned}
\mathrm{A}_{j}(\overrightarrow{\mathrm{~b}}) & =\left[\begin{array}{lllllll}
\overrightarrow{\mathrm{a}}_{1} & \cdots & \overrightarrow{\mathrm{a}}_{\mathrm{j}-1} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{a}}_{j+1} & \cdots & \overrightarrow{\mathrm{a}}_{\mathrm{n}}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
\mathrm{A} \overrightarrow{\mathrm{e}}_{1} & \cdots & \mathrm{~A} \overrightarrow{\mathrm{e}}_{j-1} & \mathrm{~A} \overrightarrow{\mathrm{x}} & A \overrightarrow{\mathrm{e}}_{j+1} & \cdots \\
A \vec{e}_{n}
\end{array}\right] \\
& =\mathrm{A}\left[\begin{array}{llllll}
\overrightarrow{\mathrm{e}}_{1} & \cdots & \overrightarrow{\mathrm{e}}_{j-1} & \overrightarrow{\mathrm{x}} & \overrightarrow{\mathrm{e}}_{j+1} & \cdots \\
\overrightarrow{\mathrm{e}}_{\mathrm{n}}
\end{array}\right] \\
& =A I_{j}(\overrightarrow{\mathrm{x}})
\end{aligned}
$$

Proof.

- Notice that

$$
\begin{aligned}
\mathrm{A}_{j}(\overrightarrow{\mathrm{~b}}) & =\left[\begin{array}{lllllll}
\overrightarrow{\mathrm{a}}_{1} & \cdots & \overrightarrow{\mathrm{a}}_{\mathrm{j}-1} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{a}}_{j+1} & \cdots & \overrightarrow{\mathrm{a}}_{\mathrm{n}}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
\mathrm{A} \overrightarrow{\mathrm{e}}_{1} & \cdots & \mathrm{~A} \overrightarrow{\mathrm{e}}_{j-1} & \mathrm{~A} \overrightarrow{\mathrm{x}} & A \overrightarrow{\mathrm{e}}_{j+1} & \cdots \\
A \vec{e}_{n}
\end{array}\right] \\
& =\mathrm{A}\left[\begin{array}{llllll}
\overrightarrow{\mathrm{e}}_{1} & \cdots & \overrightarrow{\mathrm{e}}_{j-1} & \overrightarrow{\mathrm{x}} & \overrightarrow{\mathrm{e}}_{j+1} & \cdots \\
\overrightarrow{\mathrm{e}}_{\mathrm{n}}
\end{array}\right] \\
& =A I_{j}(\overrightarrow{\mathrm{x}})
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{I}_{\mathrm{j}}(\overrightarrow{\mathrm{x}}) & =\left[\begin{array}{lllllll}
\overrightarrow{\mathrm{e}}_{1} & \cdots & \overrightarrow{\mathrm{e}}_{\mathrm{j}-1} & \overrightarrow{\mathrm{x}} & \overrightarrow{\mathrm{e}}_{\mathrm{j}+1} & \cdots & \overrightarrow{\mathrm{e}}_{\mathrm{n}}
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
1 & & & \mathrm{x}_{1} & & & \\
& \ddots & \vdots & & & \\
& & 1 & \mathrm{x}_{\mathrm{j}-1} & & & \\
& & & \mathrm{x}_{\mathrm{j}} \\
\mathrm{x}_{\mathrm{j}+1} & 1 & & \\
& & & \vdots & & \ddots & \\
& & & \mathrm{x}_{\mathrm{n}} & & & 1
\end{array}\right]
\end{aligned}
$$

Proof. (continued)

- Hence, by taking the determinants on both sides, we have

$$
\begin{aligned}
\operatorname{det}\left(\mathrm{A}_{\mathrm{j}}(\overrightarrow{\mathrm{~b}})\right) & =\operatorname{det}\left(\mathrm{A}_{\mathrm{j}}(\overrightarrow{\mathrm{x}})\right) \\
& =\operatorname{det}(\mathrm{A}) \operatorname{det}\left(\mathrm{I}_{\mathrm{j}}(\overrightarrow{\mathrm{x}})\right)
\end{aligned}
$$

- And because $\operatorname{det}(\mathrm{A}) \neq 0$, we can then write:

$$
\operatorname{det}\left(\mathrm{I}_{\mathrm{j}}(\overrightarrow{\mathrm{x}})\right)=\frac{\operatorname{det}\left(\mathrm{A}_{\mathrm{j}}(\overrightarrow{\mathrm{~b}})\right)}{\operatorname{det}(\mathrm{A})}
$$

- Finally, notice that

$$
\operatorname{det}\left(\mathrm{I}_{\mathrm{j}}(\overrightarrow{\mathrm{x}})\right)=\cdots
$$

Proof. (continued)

- Hence, by taking the determinants on both sides, we have

$$
\begin{aligned}
\operatorname{det}\left(\mathrm{A}_{\mathrm{j}}(\overrightarrow{\mathrm{~b}})\right) & =\operatorname{det}\left(\mathrm{A} \mathrm{I}_{\mathrm{j}}(\overrightarrow{\mathrm{x}})\right) \\
& =\operatorname{det}(\mathrm{A}) \operatorname{det}\left(\mathrm{I}_{\mathrm{j}}(\overrightarrow{\mathrm{x}})\right)
\end{aligned}
$$

- And because $\operatorname{det}(\mathrm{A}) \neq 0$, we can then write:

$$
\operatorname{det}\left(\mathrm{I}_{\mathrm{j}}(\overrightarrow{\mathrm{x}})\right)=\frac{\operatorname{det}\left(\mathrm{A}_{\mathrm{j}}(\overrightarrow{\mathrm{~b}})\right)}{\operatorname{det}(\mathrm{A})}
$$

- Finally, notice that

$$
\operatorname{det}\left(\mathrm{I}_{\mathrm{j}}(\overrightarrow{\mathrm{x}})\right)=\cdots=\mathrm{x}_{\mathrm{j}} .
$$

Problem

Find x_{3} such that

$$
\begin{aligned}
3 \mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3} & =-1 \\
5 \mathrm{x}_{1}+2 \mathrm{x}_{2} & \\
\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3} & =1
\end{aligned}
$$

Problem

Find x_{3} such that

$$
\begin{aligned}
3 \mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3} & =-1 \\
5 \mathrm{x}_{1}+2 \mathrm{x}_{2} & \\
\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3} & =1
\end{aligned}
$$

Solution
By Cramer's rule, $\mathrm{x}_{3}=\frac{\operatorname{det} \mathrm{A}_{3}}{\operatorname{det} \mathrm{~A}}$, where

$$
A=\left[\begin{array}{rrr}
3 & 1 & -1 \\
5 & 2 & 0 \\
1 & 1 & -1
\end{array}\right] \quad \text { and } \quad A_{3}=\left[\begin{array}{rrr}
3 & 1 & -1 \\
5 & 2 & 2 \\
1 & 1 & 1
\end{array}\right]
$$

Problem

Find x_{3} such that

$$
\begin{aligned}
3 \mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3} & =-1 \\
5 \mathrm{x}_{1}+2 \mathrm{x}_{2} & \\
\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3} & =1
\end{aligned}
$$

Solution
By Cramer's rule, $\mathrm{x}_{3}=\frac{\operatorname{det} \mathrm{A}_{3}}{\operatorname{det} \mathrm{~A}}$, where

$$
A=\left[\begin{array}{rrr}
3 & 1 & -1 \\
5 & 2 & 0 \\
1 & 1 & -1
\end{array}\right] \quad \text { and } \quad A_{3}=\left[\begin{array}{rrr}
3 & 1 & -1 \\
5 & 2 & 2 \\
1 & 1 & 1
\end{array}\right]
$$

Computing the determinants of these two matrices,

$$
\operatorname{det} \mathrm{A}=-4 \quad \text { and } \quad \operatorname{det} \mathrm{A}_{3}=-6
$$

Problem

Find x_{3} such that

$$
\begin{aligned}
3 x_{1}+x_{2}-x_{3} & =-1 \\
5 x_{1}+2 x_{2} & \\
x_{1}+x_{2}-x_{3} & =1
\end{aligned}
$$

Solution
By Cramer's rule, $\mathrm{x}_{3}=\frac{\operatorname{det} \mathrm{A}_{3}}{\operatorname{det} \mathrm{~A}}$, where

$$
A=\left[\begin{array}{rrr}
3 & 1 & -1 \\
5 & 2 & 0 \\
1 & 1 & -1
\end{array}\right] \quad \text { and } \quad A_{3}=\left[\begin{array}{rrr}
3 & 1 & -1 \\
5 & 2 & 2 \\
1 & 1 & 1
\end{array}\right]
$$

Computing the determinants of these two matrices,

$$
\operatorname{det} \mathrm{A}=-4 \quad \text { and } \quad \operatorname{det} \mathrm{A}_{3}=-6
$$

Therefore, $\mathrm{x}_{3}=\frac{-6}{-4}=\frac{3}{2}$.

Remark

For practice, you should compute $\operatorname{det} \mathrm{A}_{1}$ and $\operatorname{det} \mathrm{A}_{2}$, where

$$
A_{1}=\left[\begin{array}{rrr}
-1 & 1 & -1 \\
2 & 2 & 0 \\
1 & 1 & -1
\end{array}\right] \quad \text { and } \quad A_{2}=\left[\begin{array}{rrr}
3 & -1 & -1 \\
5 & 2 & 0 \\
1 & 1 & -1
\end{array}\right]
$$

and then solve for x_{1} and x_{2}.

Remark

For practice, you should compute $\operatorname{det} \mathrm{A}_{1}$ and $\operatorname{det} \mathrm{A}_{2}$, where

$$
A_{1}=\left[\begin{array}{rrr}
-1 & 1 & -1 \\
2 & 2 & 0 \\
1 & 1 & -1
\end{array}\right] \quad \text { and } \quad A_{2}=\left[\begin{array}{rrr}
3 & -1 & -1 \\
5 & 2 & 0 \\
1 & 1 & -1
\end{array}\right]
$$

and then solve for x_{1} and x_{2}.
Solution. $\mathrm{x}_{1}=-1, \mathrm{x}_{2}=7 / 2$.

Determinants and Matrix Inverses

Adjugates

Cramer's Rule

Polynomial Interpolation and Vandermonde Determinant

Polynomial Interpolation and Vandermonde Determinant

Polynomial Interpolation and Vandermonde Determinant

Problem

Given data points $(0,1),(1,2),(2,5)$ and $(3,10)$, find an interpolating polynomial $\mathrm{p}(\mathrm{x})$ of degree at most three, and then estimate the value of y corresponding to $\mathrm{x}=3 / 2$.

Polynomial Interpolation and Vandermonde Determinant

Problem

Given data points $(0,1),(1,2),(2,5)$ and $(3,10)$, find an interpolating polynomial $\mathrm{p}(\mathrm{x})$ of degree at most three, and then estimate the value of y corresponding to $\mathrm{x}=3 / 2$.

Solution

We want to find the coefficients $\mathrm{r}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}$ and r_{3} of

$$
p(x)=r_{0}+r_{1} x+r_{2} x^{2}+r_{3} x^{3}
$$

so that $\mathrm{p}(0)=1, \mathrm{p}(1)=2, \mathrm{p}(2)=5$, and $\mathrm{p}(3)=10$.

$$
\begin{aligned}
& \mathrm{p}(0)=\mathrm{r}_{0}=1 \\
& \mathrm{p}(1)=\mathrm{r}_{0}+\mathrm{r}_{1}+\mathrm{r}_{2}+\mathrm{r}_{3}=2 \\
& \mathrm{p}(2)=\mathrm{r}_{0}+2 \mathrm{r}_{1}+4 \mathrm{r}_{2}+8 \mathrm{r}_{3}=5 \\
& \mathrm{p}(3)=\mathrm{r}_{0}+3 \mathrm{r}_{1}+9 \mathrm{r}_{2}+27 \mathrm{r}_{3}=10
\end{aligned}
$$

Solution (continued)
Solve this system of four equations in the four variables $\mathrm{r}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}$ and r_{3}.

Solution (continued)
Solve this system of four equations in the four variables $\mathrm{r}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}$ and r_{3}.

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 2 \\
1 & 2 & 4 & 8 & 5 \\
1 & 3 & 9 & 27 & 10
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Solution (continued)
Solve this system of four equations in the four variables $\mathrm{r}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}$ and r_{3}.

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 2 \\
1 & 2 & 4 & 8 & 5 \\
1 & 3 & 9 & 27 & 10
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Therefore, $\mathrm{r}_{0}=1, \mathrm{r}_{1}=0, \mathrm{r}_{2}=1, \mathrm{r}_{3}=0$, and so

$$
\mathrm{p}(\mathrm{x})=1+\mathrm{x}^{2} .
$$

Solution (continued)
Solve this system of four equations in the four variables $\mathrm{r}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}$ and r_{3}.

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 2 \\
1 & 2 & 4 & 8 & 5 \\
1 & 3 & 9 & 27 & 10
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Therefore, $\mathrm{r}_{0}=1, \mathrm{r}_{1}=0, \mathrm{r}_{2}=1, \mathrm{r}_{3}=0$, and so

$$
\mathrm{p}(\mathrm{x})=1+\mathrm{x}^{2} .
$$

Finally, the estimate is

$$
\mathrm{y}=\mathrm{p}\left(\frac{3}{2}\right)=1+\left(\frac{3}{2}\right)^{2}=\frac{13}{4} .
$$

Theorem (Polynomial Interpolation)

Given n data points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ with the x_{i} distinct, there is a unique polynomial

$$
\mathrm{p}(\mathrm{x})=\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}+\mathrm{r}_{2} \mathrm{x}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}^{\mathrm{n}-1}
$$

such that $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{y}_{\mathrm{i}}$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}$.

Theorem (Polynomial Interpolation)

Given n data points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ with the x_{i} distinct, there is a unique polynomial

$$
\mathrm{p}(\mathrm{x})=\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}+\mathrm{r}_{2} \mathrm{x}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}^{\mathrm{n}-1}
$$

such that $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{y}_{\mathrm{i}}$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}$.

The polynomial $\mathrm{p}(\mathrm{x})$ is called the interpolating polynomial for the data.

To find $p(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots+r_{n-1} x^{n-1}$, set up a system of n linear equations in the n variables $\mathrm{r}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}-1}$.

$$
\begin{array}{cc}
\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}_{1}+\mathrm{r}_{2} \mathrm{x}_{1}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}_{1}^{\mathrm{n}-1} & =\mathrm{y}_{1} \\
\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}_{2}+\mathrm{r}_{2} \mathrm{x}_{2}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}_{2}^{\mathrm{n-1}} & =\mathrm{y}_{2} \\
\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}_{3}+\mathrm{r}_{2} \mathrm{x}_{3}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}_{3}^{\mathrm{n}-1} & =\mathrm{y}_{3} \\
\vdots & \vdots \\
\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}_{\mathrm{n}}+\mathrm{r}_{2} \mathrm{x}_{\mathrm{n}}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}}^{\mathrm{n}-1} & =\mathrm{y}_{\mathrm{n}}
\end{array}
$$

To find $p(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots+r_{n-1} x^{n-1}$, set up a system of n linear equations in the n variables $r_{0}, r_{1}, r_{2}, \ldots, r_{n-1}$.

$$
\begin{array}{cc}
\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}_{1}+\mathrm{r}_{2} \mathrm{x}_{1}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}_{1}^{\mathrm{n}-1} & =\mathrm{y}_{1} \\
\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}_{2}+\mathrm{r}_{2} \mathrm{x}_{2}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}_{2}^{\mathrm{n-1}} & =\mathrm{y}_{2} \\
\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}_{3}+\mathrm{r}_{2} \mathrm{x}_{3}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}_{3}^{\mathrm{n}-1} & =\mathrm{y}_{3} \\
\vdots & \vdots \\
\vdots \\
\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}_{\mathrm{n}}+\mathrm{r}_{2} \mathrm{x}_{\mathrm{n}}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}}^{\mathrm{n}-1} & =\mathrm{y}_{\mathrm{n}}
\end{array}
$$

The coefficient matrix for this system is

$$
\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right]
$$

To find $p(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots+r_{n-1} x^{n-1}$, set up a system of n linear equations in the n variables $r_{0}, r_{1}, r_{2}, \ldots, r_{n-1}$.

$$
\begin{array}{cc}
\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}_{1}+\mathrm{r}_{2} \mathrm{x}_{1}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}_{1}^{\mathrm{n}-1} & =\mathrm{y}_{1} \\
\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}_{2}+\mathrm{r}_{2} \mathrm{x}_{2}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}_{2}^{\mathrm{n-1}} & =\mathrm{y}_{2} \\
\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}_{3}+\mathrm{r}_{2} \mathrm{x}_{3}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}_{3}^{\mathrm{n}-1} & =\mathrm{y}_{3} \\
\vdots & \vdots \\
\vdots \\
\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}_{\mathrm{n}}+\mathrm{r}_{2} \mathrm{x}_{\mathrm{n}}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}}^{\mathrm{n}-1} & =\mathrm{y}_{\mathrm{n}}
\end{array}
$$

The coefficient matrix for this system is

$$
\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right]
$$

- Such matrix is called Vandermonde matrix.
- Its determinant is called Vandermonde determinant.

Theorem (Vandermonde Determinant)
Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$ be real numbers, $\mathrm{n} \geq 2$. The corresponding Vandermonde determinant is

$$
\operatorname{det}\left[\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n-1} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & a_{n} & a_{n}^{2} & \cdots & a_{n}^{n-1}
\end{array}\right]=\prod_{1 \leq j<i \leq n}\left(a_{i}-a_{j}\right)
$$

Proof.

We will prove this by induction. It is clear that when $\mathrm{n}=2$,

$$
\operatorname{det}\left(\begin{array}{ll}
1 & a_{1} \\
1 & a_{2}
\end{array}\right)=a_{2}-a_{1}=\prod_{1 \leq j<i \leq 2}\left(a_{i}-a_{j}\right) .
$$

Proof.

We will prove this by induction. It is clear that when $\mathrm{n}=2$,

$$
\operatorname{det}\left(\begin{array}{ll}
1 & a_{1} \\
1 & a_{2}
\end{array}\right)=a_{2}-a_{1}=\prod_{1 \leq j<i \leq 2}\left(a_{i}-a_{j}\right)
$$

Assume that it is true for $\mathrm{n}-1$.

Proof.

We will prove this by induction. It is clear that when $\mathrm{n}=2$,

$$
\operatorname{det}\left(\begin{array}{ll}
1 & a_{1} \\
1 & a_{2}
\end{array}\right)=a_{2}-a_{1}=\prod_{1 \leq j<i \leq 2}\left(a_{i}-a_{j}\right)
$$

Assume that it is true for $\mathrm{n}-1$. Now let's consider the case n . Denote

$$
\mathrm{p}(\mathrm{x}):=\operatorname{det}\left[\begin{array}{ccccc}
1 & \mathrm{a}_{1} & \mathrm{a}_{1}^{2} & \cdots & \mathrm{a}_{1}^{\mathrm{n}-1} \\
1 & \mathrm{a}_{2} & \mathrm{a}_{2}^{2} & \cdots & a_{2}^{\mathrm{n}-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & a_{n-1} & a_{n-1}^{2} & \cdots & a_{n-1}^{n-1} \\
1 & \mathrm{x} & \mathrm{x}^{2} & \cdots & x^{n-1}
\end{array}\right]
$$

Proof. (continued)
Because $\mathrm{p}\left(\mathrm{a}_{1}\right)=\cdots=\mathrm{p}\left(\mathrm{a}_{\mathrm{n}-1}\right)=0$ (why?), $\mathrm{p}(\mathrm{x})$ has to take the following form:

$$
p(x)=c\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n-1}\right) .
$$

To identify the constant c , notice that c is the coefficient for $\mathrm{x}^{\mathrm{n}-1}$. By cofactor expansion of the determinant along the last row,

$$
\begin{aligned}
c & =(-1)^{n+n} \operatorname{det}\left[\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n-1} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & a_{n-1} & a_{n-1}^{2} & \cdots & a_{n-1}^{n-1}
\end{array}\right] \\
& =\prod_{1 \leq j<i \leq n-1}\left(a_{i}-a_{j}\right) .
\end{aligned}
$$

Proof. (continued)
Hence,

$$
p\left(a_{n}\right)=\left(\prod_{1 \leq j<i \leq n-1}\left(a_{i}-a_{j}\right)\right) \times\left(a_{n}-a_{1}\right)\left(a_{n}-a_{2}\right) \cdots\left(a_{n}-a_{n-1}\right)
$$

Example

In our earlier example with the data points $(0,1),(1,2),(2,5)$ and $(3,10)$, we have

$$
a_{1}=0, \quad a_{2}=1, \quad a_{3}=2, \quad a_{4}=3
$$

giving us the Vandermonde determinant

$$
\left|\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27
\end{array}\right|
$$

Example

In our earlier example with the data points $(0,1),(1,2),(2,5)$ and $(3,10)$, we have

$$
a_{1}=0, \quad a_{2}=1, \quad a_{3}=2, \quad a_{4}=3
$$

giving us the Vandermonde determinant

$$
\left|\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27
\end{array}\right|
$$

According to the previous theorem, this determinant is equal to

$$
\begin{aligned}
& \left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right)\left(a_{3}-a_{2}\right)\left(a_{4}-a_{1}\right)\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right) \\
= & (1-0)(2-0)(2-1)(3-0)(3-1)(3-2) \\
= & 2 \times 3 \times 2 \\
= & 12 .
\end{aligned}
$$

Corollary
The Vandermonde determinant is nonzero if $a_{1}, a_{2}, \ldots, a_{n}$ are distinct.

Corollary

The Vandermonde determinant is nonzero if $a_{1}, a_{2}, \ldots, a_{n}$ are distinct.

This means that given n data points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ with distinct x_{i}, then there is a unique interpolating polynomial

$$
\mathrm{p}(\mathrm{x})=\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{x}+\mathrm{r}_{2} \mathrm{x}^{2}+\cdots+\mathrm{r}_{\mathrm{n}-1} \mathrm{x}^{\mathrm{n}-1}
$$

